Space tracker

 # 🚀 SpaceGuard AI: Autonomous Orbital Debris Mitigation System


🛰️ *AI-Powered Space Sustainability Solution*  

**Built for NASA Space Apps Challenge: Impact Edition**


---


## 📖 Executive Summary


**SpaceGuard AI** is an **AI-driven orbital debris mitigation platform** crafted for **proactive space sustainability initiatives**.


It integrates:

- **Autonomous multi-modal drone fleets**

- **Reinforcement learning-based control systems**

- **LSTM-powered predictive analytics**


Together, these technologies actively **detect, track, and capture hazardous orbital debris**, securing operational safety for satellites and future space missions.


🎯 *Precisely tailored to align with NASA’s Orbital Debris Mitigation Programs.*


---


## 🚀 Key Highlights


✅ **Autonomous Multi-Modal Drones**  

- Net, harpoon, and magnetic capture mechanisms  


✅ **Realistic Orbital Debris Dynamics Simulation**  

- J2 perturbations, atmospheric drag, orbital decay  


✅ **LSTM-Based Predictive Trajectory Forecasting**  

- AI-predicts debris positions for optimized intercept paths  


✅ **Voice-Controlled Command System via NLP**  

- Mission control via natural language commands  


✅ **Real-Time 3D Debris Tracking and Visualization**  

- Live debris tracking through interactive 3D simulations  


✅ **Judge-Friendly Presentation Approach**  

- Clean, video-optional, interactive documentation  


---


## 🌟 Key Differentiators


### 🔹 1️⃣ Multi-Agent Reinforcement Learning Control System


| **Module**             | **Technology**                    | **Outcome**                                  |

|:----------------------|:----------------------------------|:----------------------------------------------|

| Drone Navigation        | Proximal Policy Optimization (PPO) | Optimizes debris capture path planning       |

| Collision Avoidance     | Potential Field Algorithm          | Prevents inter-drone and debris collisions   |

| Target Prioritization   | Custom Danger Scoring Engine       | Focuses on high-risk, high-priority debris   |


---


### 🔹 2️⃣ NASA Orbital Debris Data Integration


- **Fetches and processes live orbital debris data** from **CelesTrak TLE sets**

- Enables **mission-critical real-time awareness**


---


## 📦 Sample Python Integration


```python

# Real TLE data ingestion from CELESTRAK

import requests


def load_debris_from_tle():

    response = requests.get("https://celestrak.org/NORAD/elements/active.txt")

    tle_data = response.text.splitlines()

    print(f"Loaded {len(tle_data)} orbital objects.")

```


---


## 🌐 Why SpaceGuard AI Matters


🚀 With over **36,500 tracked objects in orbit** and thousands of smaller, untracked debris threatening missions daily — **SpaceGuard AI** delivers an **autonomous, intelligent, and scalable solution**.


By integrating:

- **AI-based prediction**

- **Reinforcement learning**

- **Real-time simulation**

- **Voice-commanded operations**


It ensures a **safe, reliable, and efficient space traffic management future**.


---


## ✨ Built for NASA. Designed for Space. Powered by AI.


---


## 👨‍💻 About the Creator


**👤 Name:** Sheikh Haris Raza Sheikh Ilyas  

**📅 Date of Birth:** 21/02/2007  

**📍 Address:** Plot No 13, Tal Nagar, Bidgaon, Nagpur, Maharashtra - 440035  

**🎓 Education:** Pursuing Electrical Engineering at **KDK College of Engineering, Nagpur**


💡 *Though my primary field is Electrical Engineering, I’m deeply passionate about programming and futuristic AI innovations.*


Languages I work with:

- **C**

- **C++**

- **Java**

- **Python**


**🔗 LinkedIn:** [https://www.linkedin.com/in/haris-sheikh-15b287317](https://www.linkedin.com/in/haris-sheikh-15b287317)  

**🔗 GitHub:** [https://github.com/Sheikhharis311](https://github.com/Sheikhharis311)


*This project is a reflection of my vision to merge engineering, AI, and space-tech to solve real-world problems.*


---


## 📌 Follow for more AI and SpaceTech projects soon!


**#SpaceGuardAI #NASAAppsChallenge #AIforSpace #OrbitalDebrisMitigation #ReinforcementLearning #MadeByHaris**


---

Comments

Popular posts from this blog

AI Stories India